$R + R^2$ supergravity and off-shell multiplets

Antoine Van Proeyen KU Leuven

mostly based on collaborations with **R. Kallosh and S. Ferrara**

Dubna workshop 'What next ?' March 4, 2014

Planck 2013 results; constraints on inflation

Planck collaboration, 1303.5082

Starobinsky inflation and higher derivative terms in gravity

 Higher derivative terms to replace initial singularity (Starobinsky, 1980);

rewritten as $R+R^2$: Kofman, Linde, Starobinsky, 1985

 Correcting Einstein theory (2nd order Lagrangian) with 4th order terms

$$L = \frac{1}{2\kappa^2}R + a R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} + b R_{\mu\nu}R^{\mu\nu} + c R^2$$

 $S = \int \mathrm{d}^4 x \sqrt{g} L \,, \qquad L = \frac{\mathbf{I}}{2\kappa^2} R$

 $\kappa^2 = 8\pi G$

These are also first string corrections (and also studied for black hole entropy, corrections to AdS/CFT, quantum loops, ...)

Plan

- 1. Gravity: 4th order derivative terms and conformal structure
- 2. N=1 supergravity: auxiliary fields and supersymmetrization of R+R² terms
- 3. N=2 auxiliary fields and expectations for dual theories to R+R² supergravity
- 4. N=4 superconformal structure
- 5. Conclusions

4th order terms in gravity • Euler density $L = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2$ is a topological invariant \rightarrow does not contribute to field equations. **Conformal invariant** $L = C_{\mu\nu\rho\sigma}C^{\mu\nu\rho\sigma}$ $= R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 2R_{\mu\nu}R^{\mu\nu} + \frac{1}{3}R^2$ $\simeq 2(R_{\mu\nu}R^{\mu\nu}-\frac{1}{3}R^2)$ • We parametrize $L = \frac{1}{2\kappa^2}R + a R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} + b R_{\mu\nu}R^{\mu\nu} + c R^2$ $= \frac{1}{2\nu^2}R + \alpha R^2 + \beta (R_{\mu\nu}R^{\mu\nu} - \frac{1}{3}R^2)$

- K. Stelle, 1977:
 - without α and β : massless spin 2
 - with α : additional physical spin 0 with $m_0^{-2} = 12 \alpha \kappa^2$
 - with β : additional ghost spin 2 with $m_2^{-2} = -2\beta \kappa^2$

Degrees of freedom (dof)

- On-shell dof = # helicity states (4 dim)
 - massless: 2 for every spin except *s*=0: 1 state
 - massive : 2s+1
- Off-shell dof = # field components # gauge transform
 - real scalar: 1
 - Majorana fermion: 4
 - Gauge vector: 4 1 = 3
 - metric field : 16 6 4 = 6 (local Lorentz and translations)
 - gravitino : 16 4 = 12 (local susy)

Supersymmetry: as well on-shell as off-shell # bosonic dof = # fermionic dof (only known for N=1,2): necessity of auxiliary fields (0 dof on shell)

Particle states

Goal of this talk

- Show how this structure is valid with supersymmetry
- auxiliary fields (off shell dof) become propagating
 ⇒ structure of auxiliary fields already determines
 content of massive sector
 ⇒ different auxiliary fields → different massive sector
- In conformal structure: different compensators
 - in N=1 : understanding of two inequivalent generalizations
 - in N=2: there are 3 different generalizations with different compensating multiplets, and we thus expect different massive sectors for higher-derivative theories

Conformal structure: Weyl multiplet

- M_{ab} 6 Lorentz rotations
- D 1 dilatation
- K_a 4 special conformal transformations f_{μ}

Constraints determine two gauge fields

$$\omega_{\mu}{}^{ab} = \omega_{\mu}{}^{ab}(e,b)$$

'Weyl multiplet': $e_{\mu}{}^a,\,b_{\mu}$

dof:
$$e_{\mu}{}^{a}$$
: 16 - 4 - 6 - 1 = 5
 b_{μ} : 4 - 4 = 0

$$\delta_K b_\mu = e_{\mu a} \lambda^a_{\mathsf{K}}$$

 $\frac{1}{4}R_{\mu}^{a} + \frac{1}{24}e_{\mu}^{a}R$

gauge choice : $b_{\mu} = 0$

Conformal action

Consider a scalar. We have to define dilatation transformation

 $\delta_D \phi = w \lambda_D \phi$ w parameter: 'Weyl weight' $\Box^{C}\phi \equiv \eta^{ab}\mathcal{D}_{b}\mathcal{D}_{a}\phi = \Box\phi + 2w\,e^{a\mu}f_{\mu a}\phi \qquad e^{\mu a}f_{\mu a} = -\frac{1}{12}R$ w = 1 $\Box^C \phi = \Box \phi - rac{1}{6} R \phi$ $\delta_{\mathsf{D},\mathsf{K}} \Box^C \phi = 3 \lambda_D \Box^C \phi$. $I = -\frac{1}{2} \int \mathrm{d}^4 x \, e\phi \Box^C \phi = \int \mathrm{d}^4 x \, e\left(\frac{1}{2}g^{\mu\nu}(\partial_\mu\phi)(\partial_\nu\phi) + \frac{1}{12}R\phi^2\right)$ wrong sign kinetic terms; but this is not physical gauge fix dilatations $\phi^2 = \frac{6}{\kappa^2}$: $I = \int d^4 x \, e \frac{1}{2\kappa^2} R$

Higher order action

$$L = \frac{1}{2\kappa^2}R + \alpha R^2$$
with previous gauge $\phi = \frac{\sqrt{6}}{\kappa}$, $\Box^C \phi = -\frac{1}{\sqrt{6\kappa}}R$, $\Box^C \phi = -\frac{1}{6}R$
is the conformal action $L = -\frac{1}{2}\phi\Box^C \phi + 36\alpha \left(\frac{\Box^C \phi}{\phi}\right)^2$
• Conformal dualization:
 $L = -\frac{1}{2}\phi\Box^C \phi + \sigma\left(\chi - \frac{\Box^C \phi}{\phi}\right) + 36\alpha \chi^2$
eliminate χ :
 $L = -(\frac{1}{2}\phi^2 + \sigma)\frac{\Box^C \phi}{\phi} - \frac{1}{144\alpha}\sigma^2$
 $L = -(\frac{1}{2}\phi^2 + \sigma)\frac{\Box^C \phi}{\phi} - \frac{1}{144\alpha}(\frac{3}{\kappa^2} - \frac{1}{2}\phi^2)^2$
 $\simeq \frac{1}{2\kappa^2}R - \frac{3(\partial\mu\phi)(\partial^\mu\phi)}{(\kappa\phi)^2} - \frac{1}{16\alpha\kappa^4}(1 - \frac{1}{6}\kappa^2\phi^2)^2$
physical normalization
 $\kappa\phi = \sqrt{6}\exp\left(-\frac{1}{\sqrt{6}}\kappa\phi\right)$
 $L = \frac{1}{2\kappa^2}R - \frac{1}{2}(\partial_\mu\phi)(\partial^\mu\phi) - \frac{1}{16\alpha\kappa^4}\left[1 - \exp\left(-\sqrt{\frac{2}{3}}\kappa\phi\right)\right]^2$

Starobinsky model result

$$L = \frac{1}{2\kappa^2} R - \frac{1}{2} (\partial_\mu \varphi) (\partial^\mu \varphi) - \frac{1}{16 \, \alpha \kappa^4} \left[1 - \exp\left(-\sqrt{\frac{2}{3}} \kappa \varphi\right) \right]^2$$

Thus: R+ R² without conformal term: equivalent to one physical propagating massive compensating field.
 Original result: B. Whitt, 1984
 Scalar with positive kinetic terms ('scalaron'), and mass as in seminal work of K. Stelle, potential suitable for slow roll inflation to Minkowski vacuum

Schematic

off-shell Poincaré (6 dof) =

conformal spin 2 (5 dof) + compensating scalar (1 dof)

Weyl action

dual of R² action

massive spin 2 ghost + massive spin 0 physical

on-shell Poincaré (2 dof)

R action

N=1 supergravity

Massless multiplets:

Massive multiplets

spin	#	dof/particle	bosonic	fermionic	spin	#	dof/particle	bosonic	fermionic
2	1	2	2		2	1	5	5	
3/2	1	2		2	3/2	2	4		8
TOTAL			2	2	1	1	3	3	
					TOTAL			8	8
spin	#	dof/particle	bosonic	fermionic	spin	#	dof/particle	bosonic	fermionic
1	1	2	2		1	1	3	3	
1/2	1	2		2	1/2	2	2		4
TOTAL			2	2	0	1	1	1	
					TOTAL			4	4
spin	#	dof/particle	bosonic	fermionic	spin	#	dof/particle	bosonic	fermionic
1/2	1	2		2	1/2	1	2		2
0	2	1	2		0	2	1	2	
TOTAL			2	2	TOTAL			2	2
				///					

N=1 D=4 Superconformal gauge
fields and the Weyl multiplet
$$P_a$$
 M_{ab} D K_a $U(1)$ Q S A 6 1 4 1 4 4 e_{μ} $\omega_{\mu}b$ b_{μ} f_{μ} f_{μ} f_{μ} e_{μ} $\omega_{\mu}b$ b_{μ} f_{μ} f_{μ} f_{μ} $Weyl multiplet': e_{μ}^{a} b_{μ} A_{μ} ψ_{μ} ψ_{μ} $\frac{field}{e_{\mu}^{a}}$ $16-4-6-1=5$ 1 1 1 ϕ_{μ} $4-4=0$ 1 1 1 1 A_{μ} $4-4=0$ 2 1 1 1 i $16-4-4=8$ 2 1 1 1 is the
massive mult. $\frac{spin}{2}$ $\frac{spin}{2}$ $\frac{spin}{2}$ $\frac{spin}{2}$ $\frac{spin}{2}$ $\frac{spin}{2}$$

Superconformal methods for cosmology, see review R. Kallosh, 1402.0527

To super-Poincaré super-Poincaré physical fields: $e_{\mu}^{\ a}: 16-4-6=6; \ \psi_{\mu}: 16-4=12$ We need auxiliary fields. • Other way: compare with conformal $e_{\mu}^{a}: 16-4-6-1=5; \psi_{\mu}: 16-4-4=8$ $A_{\mu}: 4 - 1 = 5$ We need compensators: the minimal ('old minimal' r • chiral mult. $(Z, \Omega, E) \rightarrow aux.$ fields $A_{\mu}(4)$ en F(2)• linear mult. $(L, \phi, E_{\mu\nu}) \rightarrow \text{aux. fields } A_{\mu}(3) \text{ en } E_{\mu\nu}(3)$ 'new minimal'

In higher derivative theories

- If Weyl action:
 - Weyl multiplet is massive spin 2 ghost multiplet.
- If R² terms: after dualization: compensating multiplet becomes physical massive multiplet
- old minimal (off-shell chiral mult);

field	# components	spin $\frac{1}{2}$	spin 0
X	2		2
F	2		2
Ω	4	2	

compare massive chiral mult.

spin	#
1/2	1
0	2

With old minimal we get 2 massive chiral multiplets !

Superconformal tensor calculus for old-minimal supergravity Poincaré supergravity: with compensating multiplet $-[S_0S_0]_D$ \mathbf{R}^2 action results from kinetic multiplet $\mathcal{R}(S_0)$ that contains the curvature: $[-S_0\overline{S}_0 + \mathcal{R}(S_0)\mathcal{R}(S_0)]_D$

Dualization $\begin{bmatrix} -S_0 \overline{S}_0 + S \overline{S} \end{bmatrix}_D + \begin{bmatrix} S_0^2 \sigma (S - \mathcal{R}(S_0)) \end{bmatrix}_F$ $= \begin{bmatrix} -S_0 \overline{S}_0 (1 + \sigma + \overline{\sigma}) + S \overline{S} \end{bmatrix}_D + \begin{bmatrix} S_0^2 \sigma S \end{bmatrix}_F$ S₀: compensating: S and σ physical + potential Conclusion on old minimal set
Dual of R+R² supergravity is a matter coupling with 2 chiral multiplets (S. Cecotti; 1987; R. Kallosh, S. Ferrara, AVP, 1309.4052)
Requires stabilization of other scalars (J. Ellis, D. Nanopoulos, D. Olive, 1305.1247; 1307.3537; R. Kallosh and A. Linde, 1306.3214)

New minimal set of auxiliary fields

without higher derivatives: dual to old minimal:S. Ferrara, L. Girardello, T. Kugo and AVP, 1983

field	# components	spin 1	spin $\frac{1}{2}$	spin 0
L	1			1
E_a	3	1		
arphi	4		2	

spin	#
1	1
1/2	2
0	1
	THE R. LOW

 R² term gives different result: massive vector multiplet: S. Cecotti, S. Ferrara, M. Porrati and S. Sabharwal, 1987;
 S. Ferrara, R. Kallosh, A. Linde and M. Porrati, 1307.7696.
 This massive multiplet was constructed in AVP, 1980.

- Only 1 scalar, does not need stabilization.
- Further possibilities for inflaton field, Kähler structure and gauged isometries in

S. Ferrara, P. Frè, A. Sorin, 1311.5059 en 1401.1201

Conclusions

- Conformal construction of supergravity shows the content of higher derivative actions.
- Different compensating multiplets imply different massive multiplets that are dual to R+R² actions.
- N=1 : known since old papers of S. Cecotti and S. Cecotti, S. Ferrara, M. Porrati and S. Sabharwal, 1987. Especially new-minimal interesting dual: a massive vector multiplet with only one physical scalar. Recently studied in more detail in view of cosmology application.
- N=2: different auxiliary field formulations known.
 They may lead to different physical R+R² theories.
- N=4: probably no $R+R^2$ theory.